BIG IDEAS

- Design for the life cycle includes consideration of social and **environmental impacts**.
- Personal design interests require the evaluation and refinement of skills.
- Tools and technologies can be adapted for specific purposes.

Learning Standards

Curricular Competencies

Students are expected to be able to do the following:

Applied Design

Understanding context
- Engage in a period of **user-centred research** and **empathetic observation** to understand design opportunities

Defining
- Establish a point of view for a chosen design opportunity
- Identify potential users, intended impact, and possible unintended negative consequences
- Make decisions about premises and **constraints** that define the design space, and identify criteria for success
- Determine whether activity is collaborative or self-directed

Ideating
- Generate ideas and add to others’ ideas to create possibilities, and prioritize them for prototyping
- Critically analyze how competing social, ethical, and sustainability considerations impact design
- Choose an idea to pursue based on success criteria and maintain an open mind about potentially viable ideas

Prototyping
- Identify and apply **sources of inspiration**
- Choose a form for prototyping and develop a **plan** that includes key stages and resources
- Analyze the design for life cycle and evaluate its **impacts**
- Visualize and construct prototypes, making changes to tools, materials, and procedures as needed
- Record **iterations** of prototyping

Content

Students are expected to know the following:

- simple woodworking and design
- orthographic and pictorial drawings
- preparation of a bill of materials and a cutting list
- **measuring instruments**
- problem-solving techniques using ratio, proportion, and geometry
- selection and identification of wood species appropriate for a given purpose
- material conservation and sustainability
- operation of **stationary power equipment** in the processing of material
- hand-tool processes in the creation of a product
- machine and equipment set up, change, and adjustment
- project **finishing methods**
- **design for the life cycle**
- ethics of **cultural appropriation** in design process
Area of Learning: APPLIED DESIGN, SKILLS, AND TECHNOLOGIES — Woodwork

Grade 11

Learning Standards (continued)

<table>
<thead>
<tr>
<th>Curricular Competencies</th>
<th>Content</th>
</tr>
</thead>
<tbody>
<tr>
<td>Testing</td>
<td></td>
</tr>
<tr>
<td>• Identify and communicate with sources of feedback</td>
<td></td>
</tr>
<tr>
<td>• Develop an appropriate test of the prototype, conduct the test, and collect and compile data</td>
<td></td>
</tr>
<tr>
<td>• Apply information from critiques, testing results, and success criteria to make changes</td>
<td></td>
</tr>
<tr>
<td>Making</td>
<td></td>
</tr>
<tr>
<td>• Identify appropriate tools, technologies, materials, processes, cost implications, and time needed for production</td>
<td></td>
</tr>
<tr>
<td>• Create design, incorporating feedback from self, others, and testing prototypes</td>
<td></td>
</tr>
<tr>
<td>• Use materials in ways that minimize waste</td>
<td></td>
</tr>
<tr>
<td>Sharing</td>
<td></td>
</tr>
<tr>
<td>• Determine how and with whom to share product and processes for feedback</td>
<td></td>
</tr>
<tr>
<td>• Share the product to evaluate its success</td>
<td></td>
</tr>
<tr>
<td>• Critically reflect on their design thinking and processes, and identify new design goals</td>
<td></td>
</tr>
<tr>
<td>• Identify and analyze new design possibilities, including how they or others might build on their concept</td>
<td></td>
</tr>
<tr>
<td>Applied Skills</td>
<td></td>
</tr>
<tr>
<td>• Apply safety procedures for themselves, co-workers, and users in both physical and digital environments</td>
<td></td>
</tr>
<tr>
<td>• Identify and assess the skills needed for design interests, individually or collaboratively, and develop specific plans to learn or refine them over time</td>
<td></td>
</tr>
<tr>
<td>• Develop competency and proficiency in skills at various levels involving manual dexterity and woodworking techniques</td>
<td></td>
</tr>
<tr>
<td>Applied Technologies</td>
<td></td>
</tr>
<tr>
<td>• Explore existing, new, and emerging tools, technologies, and systems to evaluate suitability for design interests</td>
<td></td>
</tr>
<tr>
<td>• Evaluate impacts, including unintended negative consequences, of choices made about technology use</td>
<td></td>
</tr>
<tr>
<td>• Examine the role that advancing technologies play in woodworking contexts</td>
<td></td>
</tr>
</tbody>
</table>
Big Ideas – Elaborations

- **environmental impacts**: including manufacturing, packaging, disposal, and recycling considerations

Curricular Competencies – Elaborations

- **user-centred research**: research done directly with potential users to understand how they do things and why, their physical and emotional needs, how they think about the world, and what is meaningful to them
- **empathetic observation**: aimed at understanding the values and beliefs of other cultures and the diverse motivations and needs of different people; may be informed by experiences of people involved; traditional cultural knowledge and approaches; First Peoples worldviews, perspectives, knowledge, and practices; places, including the land and its natural resources and analogous settings; experts and thought leaders
- **constraints**: limiting factors, such as task or user requirements, materials, expense, environmental impact
- **sources of inspiration**: may include personal experiences, First Peoples perspectives and knowledge, the natural environment, places, cultural influences, social media, and professionals
- **plan**: for example, pictorial drawings, sketches, flow charts
- **impacts**: including the social and environmental impacts of extraction and transportation of raw materials; manufacturing, packaging, transportation to markets; servicing or providing replacement parts; expected usable lifetime; and reuse or recycling of component materials
- **iterations**: repetitions of a process with the aim of approaching a desired result
- **sources of feedback**: may include peers; users; First Nations, Métis, or Inuit community experts; other experts and professionals both online and offline
- **technologies**: tools that extend human capabilities
- **share**: may include showing to others, use by others, giving away, or marketing and selling
Content – Elaborations

<table>
<thead>
<tr>
<th>APPLIED DESIGN, SKILLS, AND TECHNOLOGIES – Woodwork</th>
</tr>
</thead>
<tbody>
<tr>
<td>Grade 11</td>
</tr>
</tbody>
</table>

- **measuring instruments**: for example, measuring tape, steel rule, calipers, protractor
- **stationary power equipment**: for example, jointer, planer, band saw, table saw, table router, shaper, radial arm saw, mitre saw, drill press, mortise machine
- **finishing methods**: for example: sanding, prepping, staining (oil based versus water), clear coats, wax
- **design for the life cycle**: taking into account economic costs, and social and environmental impacts of the product, from the extraction of raw materials to eventual reuse or recycling of component materials
- **cultural appropriation**: using or sharing a cultural motif, theme, “voice,” image, knowledge, story, or practices without permission or without appropriate context or in a way that may misrepresent the real experience of the people from whose culture it is drawn