Area of Learning: APPLIED DESIGN, SKILLS, AND TECHNOLOGIES — Mechatronics

BIG IDEAS

Design for the life cycle includes consideration of social and environmental impacts.

Personal design interests require the evaluation and refinement of skills.

Tools and technologies can be adapted for specific purposes.

Learning Standards

Curricular Competencies

Students are expected to do the following:

Applied Design

Understanding context

- Engage in a period of user-centred research and empathetic observation to understand design opportunities

Defining

- Establish a point of view for a chosen design opportunity
- Identify potential users, intended impacts, and possible unintended negative consequences
- Make inferences about premises and constraints that define the design space, and develop criteria for success
- Determine whether activity is collaborative or self-directed

Ideating

- Identify and examine gaps for potential design improvements and innovations
- Critically analyze how competing social, ethical, and sustainability considerations impact creation and development of solutions
- Generate ideas to create a range of possibilities and add to others’ ideas in ways that create additional possibilities
- Evaluate suitability of possibilities according to success criteria, constraints, and potential gaps
- Work with users throughout the design process

Content

Students are expected to know the following:

- mechatronics design projects
- mechanical systems
- alternating and direct current
- electronic systems
- electromechanics
- computer control systems
- mechanical drafting and design
- programmable logic controllers, processors, and microcontrollers
- displays, interfaces, and instrumentation
- hydraulic and pneumatic systems
- repeatability and load capacity
- industrial applications of mechatronics
- impact of artificial intelligence (AI) and singularity in society
- design for the life cycle
- future career options and opportunities in mechatronics
- interpersonal skills for interacting with colleagues and clients
<table>
<thead>
<tr>
<th>Curricular Competencies</th>
<th>Content</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prototyping</td>
<td></td>
</tr>
<tr>
<td>• Choose an appropriate form, scale, and level of detail for prototyping, and plan procedures</td>
<td></td>
</tr>
<tr>
<td>• Analyze the design for the life cycle and evaluate its impacts</td>
<td></td>
</tr>
<tr>
<td>• Visualize and construct prototypes, making changes to tools, materials, and procedures as needed</td>
<td></td>
</tr>
<tr>
<td>• Record iterations of prototyping</td>
<td></td>
</tr>
<tr>
<td>Testing</td>
<td></td>
</tr>
<tr>
<td>• Identify and communicate with sources of feedback</td>
<td></td>
</tr>
<tr>
<td>• Develop an appropriate test of the prototype, conduct the test, and collect and compile data</td>
<td></td>
</tr>
<tr>
<td>• Evaluate design according to critiques, testing results, and success criteria to make changes</td>
<td></td>
</tr>
<tr>
<td>Making</td>
<td></td>
</tr>
<tr>
<td>• Identify appropriate tools, technologies, materials, processes, cost implications, and time needed</td>
<td></td>
</tr>
<tr>
<td>• Create design, incorporating feedback from self, others, and results from testing of the prototype</td>
<td></td>
</tr>
<tr>
<td>• Use materials in ways that minimize waste</td>
<td></td>
</tr>
<tr>
<td>Sharing</td>
<td></td>
</tr>
<tr>
<td>• Decide how and with whom to share creativity, or share and promote design and processes</td>
<td></td>
</tr>
<tr>
<td>• Share the product with users and critically evaluate its success</td>
<td></td>
</tr>
<tr>
<td>• Critically reflect on plans, products and processes, and identify new design goals</td>
<td></td>
</tr>
<tr>
<td>• Evaluate new possibilities for plans, products and processes, including how they or others might build on them</td>
<td></td>
</tr>
<tr>
<td>Applied Skills</td>
<td></td>
</tr>
<tr>
<td>• Apply safety procedures for themselves, co-workers, and users in both physical and digital environments</td>
<td></td>
</tr>
<tr>
<td>• Individually or collaboratively identify and assess skills needed for design interests</td>
<td></td>
</tr>
</tbody>
</table>
Area of Learning: APPLIED DESIGN, SKILLS, AND TECHNOLOGIES — Mechatronics

Grade 12

Learning Standards (continued)

<table>
<thead>
<tr>
<th>Curricular Competencies</th>
<th>Content</th>
</tr>
</thead>
<tbody>
<tr>
<td>- Demonstrate competency and proficiency in skills at various levels involving manual dexterity and mechatronics</td>
<td></td>
</tr>
<tr>
<td>- Develop specific plans to learn or refine identified skills over time</td>
<td></td>
</tr>
</tbody>
</table>

Applied Technologies

- Explore existing, new, and emerging tools, technologies, and systems to evaluate suitability for design interests
- Evaluate impacts, including unintended negative consequences, of choices made about technology use
- Analyze the role that changing technologies play in mechatronics-related contexts
Big Ideas – Elaborations

- **Design for the life cycle:** taking into account economic costs, and social and environmental impacts of the product, from the extraction of raw materials to eventual reuse or recycling of component materials
- **environmental impacts:** including manufacturing, packaging, disposal, and recycling considerations
- **technologies:** tools that extend human capabilities

Curricular Competencies – Elaborations

- **user-centred research:** research done directly with potential users to understand how they do things and why, their physical and emotional needs, how they think about the world, and what is meaningful to them
- **empathetic observation:** aimed at understanding the values and beliefs of other cultures and the diverse motivations and needs of different people; may be informed by experiences of people involved; traditional cultural knowledge and approaches; First Peoples worldviews, perspectives, knowledge, and practices; places, including the land and its natural resources and analogous settings; experts and thought leaders
- **constraints:** limiting factors, such as task or user requirements, materials, expense, environmental impact
- **impacts:** including social and environmental impacts of extraction and transportation of raw materials; manufacturing, packaging, and transportation to markets; servicing or providing replacement parts; expected usable lifetime; and reuse or recycling of component materials
- **iterations:** repetitions of a process with the aim of approaching a desired result
- **sources of feedback:** may include peers; users; First Nations, Métis, or Inuit community experts; other experts and professionals both online and offline
- **appropriate test:** includes evaluating the degree of authenticity required for the setting of the test, deciding on an appropriate type and number of trials, and collecting and compiling data
- **share:** may include showing to others or use by others, giving away, or marketing and selling
• **mechanical systems**: for example, structures, mechanical motion devices, gears, pulleys, levers
• **electronic systems**: including sensors, limit switches, gyroscopes, accelerometers, potentiometers, range finders
• **electromechanics**: electrical devices that perform mechanical functions; for example, linear actuators and motors
• **computer control systems**: manage commands and regulate other devices or systems
• **drafting and design**: for example, manual drafting, drawing, computer-aided design (CAD) and computer-aided manufacturing (CAM), computer numerical control (CNC)
• **hydraulic and pneumatic systems**: for example, pumps and valves, accumulators, pressure regulators
• **industrial applications**: for example, medical, automotive, aerospace, manufacturing, technologies to assist people with diverse physical abilities and challenges
• **singularity**: the hypothesis that artificial intelligence will create extensive technological and societal change
• **interpersonal skills**: for example, professional communications, collaboration, ways of explaining visuals