Science K-10 – Curricular Competencies

<table>
<thead>
<tr>
<th>Grade</th>
<th>Questioning and predicting</th>
<th>Planning and conducting</th>
<th>Processing and analyzing data and information</th>
<th>Evaluating</th>
<th>Applying and innovating</th>
<th>Communicating</th>
</tr>
</thead>
</table>
| K | • Demonstrate curiosity and a sense of wonder about the world
| | • Observe objects and events in familiar contexts
| | • Ask simple questions about familiar objects and events
| | • Make exploratory observations using their senses
| | • Safely manipulate materials
| | • Make simple measurements using non-standard units
| | • Experience and interpret the local environment
| | • Recognize First Peoples stories (including oral and written narratives), songs, and art, as ways to share knowledge
| | • Discuss observations
| | • Represent observations and ideas by drawing charts and simple pictographs
| | • Take part in caring for self, family, classroom and school through personal approaches
| | • Transfer and apply learning to new situations
| | • Generate and introduce new or refined ideas when problem solving
| | • Share observations and ideas orally
| | • Express and reflect on personal experiences of place
| 1-2 | • Demonstrate curiosity and a sense of wonder about the world
| | • Observe objects and events in familiar contexts
| | • Ask questions about familiar objects and events
| | • Make simple predictions about familiar objects and events
| | • Make and record observations
| | • Safely manipulate materials to test ideas and predictions
| | • Make and record simple measurements using informal or non-standard methods
| | • Experience and interpret the local environment
| | • Recognize First Peoples stories (including oral and written narratives), songs, and art, as ways to share knowledge
| | • Sort and classify data and information using drawings, pictographs and provided tables
| | • Compare observations with predictions through discussion
| | • Identify simple patterns and connections
| | • Compare observations with those of others
| | • Consider some environmental consequences of their actions
| | • Take part in caring for self, family, classroom and school through personal approaches
| | • Transfer and apply learning to new situations
| | • Generate and introduce new or refined ideas when problem solving
| | • Communicate observations and ideas using oral or written language, drawing, or role-play
| | • Express and reflect on personal experiences of place

© Province of British Columbia • 1
Science K-10 – Curricular Competencies – continued

<table>
<thead>
<tr>
<th>Grade</th>
<th>Questioning and predicting</th>
<th>Planning and conducting</th>
<th>Processing and analyzing data and information</th>
<th>Evaluating</th>
<th>Applying and innovating</th>
<th>Communicating</th>
</tr>
</thead>
</table>
| 3-4 | • Demonstrate curiosity about the natural world
• Observe objects and events in familiar contexts
• Identify questions about familiar objects and events that can be investigated scientifically
• Make predictions based on prior knowledge | • Suggest ways to plan and conduct an inquiry to find answers to their questions
• Consider ethical responsibilities when deciding how to conduct an experiment
• Safely use appropriate tools to make observations and measurements, using formal measurements and digital technology as appropriate
• Make observations about living and non-living things in the local environment
• Collect simple data | • Experience and interpret the local environment
• Identify First Peoples perspectives and knowledge as sources of information
• Sort and classify data and information using drawings or provided tables
• Use tables, simple bar graphs, or other formats to represent data and show simple patterns and trends
• Compare results with predictions, suggesting possible reasons for findings | • Make simple inferences based on their results and prior knowledge
• Reflect on whether an investigation was a fair test
• Demonstrate an understanding and appreciation of evidence
• Identify some simple environmental implications of their and others’ actions | • Contribute to care for self, others, school, and community through personal or collaborative approaches
• Co-operatively design projects
• Transfer and apply learning to new situations
• Generate and introduce new or refined ideas when problem solving | • Represent and communicate ideas and findings in a variety of ways, such as diagrams and simple reports, using digital technologies as appropriate
• Express and reflect on personal or shared experiences of place |
| 5-6 | • Demonstrate a sustained curiosity about a scientific topic or problem of personal interest
• Make observations in familiar or unfamiliar contexts
• Identify questions to answer or problems to solve through scientific inquiry | • With support, plan appropriate investigations to answer their questions or solve problems they have identified
• Decide which variable should be changed and measured for a fair test
• Choose appropriate data to collect to answer their questions | • Experience and interpret the local environment
• Identify First Peoples perspectives and knowledge as sources of information
• Construct and use a variety of methods, including tables, graphs, and digital technologies, as appropriate, to represent patterns or relationships in data
• Evaluate whether their investigations were fair tests
• Identify possible sources of error
• Suggest improvements to their investigation methods
• Identify some of the assumptions in secondary sources | • Contribute to care for self, others, and community through personal or collaborative approaches
• Co-operatively design projects
• Transfer and apply learning to new situations
• Generate and introduce new or refined ideas when problem solving | • Communicate ideas, explanations, and processes in a variety of ways
• Express and reflect on personal, shared, or others’ experiences of place |
Science K-10 – Curricular Competencies – continued

<table>
<thead>
<tr>
<th>Grade</th>
<th>Questioning and predicting</th>
<th>Planning and conducting</th>
<th>Processing and analyzing data and information</th>
<th>Evaluating</th>
<th>Applying and innovating</th>
<th>Communicating</th>
</tr>
</thead>
<tbody>
<tr>
<td>5-6</td>
<td>• Make predictions about the findings of their inquiry</td>
<td>• Observe, measure, and record data, using appropriate tools, including digital technologies</td>
<td>• Identify patterns and connections in data</td>
<td>• Demonstrate an understanding and appreciation of evidence</td>
<td>• Contribute to care for self, others, community, and world through personal or collaborative approaches</td>
<td>• Communicate ideas, findings, and solutions to problems, using scientific language, representations, and digital technologies as appropriate</td>
</tr>
<tr>
<td></td>
<td>• Demonstrate a sustained intellectual curiosity about a scientific topic or problem of personal interest</td>
<td>• Use equipment and materials safely, identifying potential risks</td>
<td>• Compare data with predictions and develop explanations for results</td>
<td>• Identify some of the social, ethical, and environmental implications of the findings from their own and others’ investigations</td>
<td>• Express and reflect on a variety of experiences and perspectives of place</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Make observations aimed at identifying their own questions about the natural world</td>
<td>• Identify patterns and connections in data</td>
<td>• Demonstrate an openness to new ideas and consideration of alternatives</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Identify a question to answer or a problem to solve through scientific inquiry</td>
<td>• Collaboratively plan a range of investigation types, including field work and experiments, to answer their questions or solve problems they have identified</td>
<td>• Experience and interpret the local environment</td>
<td>• Use scientific understandings to identify relationships and draw conclusions</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Formulate alternative “If…then…” hypotheses based on their questions</td>
<td>• Measure and control variables (dependent and independent) through fair tests</td>
<td>• Apply First Peoples perspectives and knowledge, other ways of knowing, and local knowledge as sources of information</td>
<td>• Reflect on their investigation methods, including the adequacy of controls on variables (dependent and independent) and the quality of the data collected</td>
<td></td>
<td></td>
</tr>
<tr>
<td>7-8</td>
<td>• Make predictions about the findings of their inquiry</td>
<td>• Observe, measure, and record data (qualitative and quantitative), using equipment, including digital technologies, with accuracy and precision</td>
<td>• Construct and use a range of methods to represent patterns or relationships in data, including tables, graphs, keys, models, and digital technologies as appropriate</td>
<td>• Identify possible sources of error and suggest improvements to their investigation methods</td>
<td>• Demonstrate an awareness of assumptions and bias in their own work and secondary sources</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Collaboratively plan a range of investigation types, including field work and experiments, to answer their questions or solve problems they have identified</td>
<td>• Use appropriate SI units and perform simple unit conversions</td>
<td>• Seek patterns and connections in data from their own investigations and secondary sources</td>
<td>• Demonstrate an understanding and appreciation of evidence (qualitative and quantitative)</td>
<td>• Demonstrate an understanding and appreciation of evidence (qualitative and quantitative)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Measure and control variables (dependent and independent) through fair tests</td>
<td>• Ensure that safety and ethical guidelines are followed in their investigations</td>
<td>• Use scientific understandings to identify relationships and draw conclusions</td>
<td></td>
<td>• Co-operatively design projects</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Observe, measure, and record data (qualitative and quantitative), using equipment, including digital technologies, with accuracy and precision</td>
<td></td>
<td>• Reflect on their investigation methods, including the adequacy of controls on variables (dependent and independent) and the quality of the data collected</td>
<td>• Transfer and apply learning to new situations</td>
<td>• Generate and introduce new or refined ideas when problem solving</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Use appropriate SI units and perform simple unit conversions</td>
<td></td>
<td>• Experience and interpret the local environment</td>
<td>• Communicate ideas, findings, and solutions to problems, using scientific language, representations, and digital technologies as appropriate</td>
<td>• Express and reflect on a variety of experiences and perspectives of place</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Ensure that safety and ethical guidelines are followed in their investigations</td>
<td></td>
<td>• Apply First Peoples perspectives and knowledge, other ways of knowing, and local knowledge as sources of information</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• Construct and use a range of methods to represent patterns or relationships in data, including tables, graphs, keys, models, and digital technologies as appropriate</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• Seek patterns and connections in data from their own investigations and secondary sources</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• Use scientific understandings to identify relationships and draw conclusions</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• Reflect on their investigation methods, including the adequacy of controls on variables (dependent and independent) and the quality of the data collected</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Science K-10 – Curricular Competencies – continued

<table>
<thead>
<tr>
<th>Grade</th>
<th>Questioning and predicting</th>
<th>Planning and conducting</th>
<th>Processing and analyzing data and information</th>
<th>Evaluating</th>
<th>Applying and innovating</th>
<th>Communicating</th>
</tr>
</thead>
</table>
| 7-8 | • Demonstrate a sustained intellectual curiosity about a scientific topic or problem of personal interest
 • Make observations aimed at identifying their own questions, including increasingly complex ones, about the natural world
 • Formulate multiple hypotheses and predict multiple outcomes | • Collaboratively and individually plan, select, and use appropriate investigation methods, including field work and lab experiments, to collect reliable data (qualitative and quantitative)
 • Assess risks and address ethical, cultural and/or environmental issues associated with their proposed methods and those of others
 • Select and use appropriate equipment, including digital technologies, to systematically and accurately collect and record data | • Experience and interpret the local environment
 • Apply First Peoples perspectives and knowledge, other ways of knowing, and local knowledge as sources of information
 • Seek and analyze patterns, trends, and connections in data, including describing relationships between variables (dependent and independent) and identifying inconsistencies
 • Construct, analyze and interpret graphs (including interpolation and extrapolation), models and/or diagrams | • Evaluate their methods and experimental conditions, including identifying sources of error or uncertainty, confounding variables, and possible alternative explanations and conclusions
 • Describe specific ways to improve their investigation methods and the quality of the data
 • Evaluate the validity and limitations of a model or analogy in relation to the phenomenon modelled | • Contribute to care for self, others, community, and world through individual or collaborative approaches
 • Transfer and apply learning to new situations
 • Generate and introduce new or refined ideas when problem solving
 • Contribute to finding solutions to problems at a local and/or global level through inquiry | • Formulate physical or mental theoretical models to describe a phenomenon
 • Communicate scientific ideas, claims, information, and perhaps a suggested course of action, for a specific purpose and audience, constructing evidence-based arguments and using appropriate scientific language, conventions, and representations
 • Express and reflect on a variety of experiences, perspectives, and worldviews through place |
| 9-10 | • Exercise a healthy, informed skepticism and use scientific knowledge and findings from their own investigations to evaluate claims in secondary sources
 • Consider social, ethical, and environmental implications of the findings from their own and others’ investigations | | | | | |
Science K-10 – Curricular Competencies – continued

<table>
<thead>
<tr>
<th>Grade</th>
<th>Questioning and predicting</th>
<th>Planning and conducting</th>
<th>Processing and analyzing data and information</th>
<th>Evaluating</th>
<th>Applying and innovating</th>
<th>Communicating</th>
</tr>
</thead>
<tbody>
<tr>
<td>9-10</td>
<td>• Ensure that safety and ethical guidelines are followed in their investigations</td>
<td></td>
<td>• Use knowledge of scientific concepts to draw conclusions that are consistent with evidence • Analyze cause-and-effect relationships</td>
<td>• Demonstrate an awareness of assumptions, question information given, and identify bias in their own work and secondary sources • Consider the changes in knowledge over time as tools and technologies have developed • Connect scientific explorations to careers in science • Exercise a healthy, informed skepticism, and use scientific knowledge and findings to form their own investigations and to evaluate claims in secondary sources • Consider social, ethical, and environmental implications of the findings from their own and others’ investigations • Critically analyze the validity of information in secondary sources and evaluate the approaches used to solve problems</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>