BIG IDEAS

- **Proportional reasoning** is used to make sense of multiplicative relationships.
- Mathematics informs financial decision making.
- **3D objects** are often represented and described in 2D space.
- Flexibility with number builds meaning, understanding, and confidence.
- Representing and analyzing data allows us to notice and wonder about relationships.

Learning Standards

<table>
<thead>
<tr>
<th>Curricular Competencies</th>
<th>Content</th>
</tr>
</thead>
<tbody>
<tr>
<td>Reasoning and modelling</td>
<td>Students are expected to do the following:</td>
</tr>
<tr>
<td>- Develop thinking strategies to solve puzzles and play games</td>
<td>Students are expected to know the following:</td>
</tr>
<tr>
<td>- Explore, analyze, and apply mathematical ideas using reason, technology, and other tools</td>
<td>- financial literacy: personal investments, loans, and budgeting</td>
</tr>
<tr>
<td>- Estimate reasonably and demonstrate fluent, flexible, and strategic thinking about number</td>
<td>- rate of change</td>
</tr>
<tr>
<td>- Model with mathematics in situational contexts</td>
<td>- how probability and statistics are used in different contexts</td>
</tr>
<tr>
<td>- Think creatively and with curiosity and wonder when exploring problems</td>
<td>- interpreting graphs in society</td>
</tr>
<tr>
<td>Understanding and solving</td>
<td>- 3D objects: angles, views, and scale diagrams</td>
</tr>
<tr>
<td>- Develop, demonstrate, and apply conceptual understanding of mathematical ideas through play, story, inquiry, and problem solving</td>
<td>- Visualize to explore and illustrate mathematical concepts and relationships</td>
</tr>
<tr>
<td>- Visualize to explore and illustrate mathematical concepts and relationships</td>
<td>- Apply flexible and strategic approaches to solve problems</td>
</tr>
<tr>
<td>- Solve problems with persistence and a positive disposition</td>
<td>- Engage in problem-solving experiences connected with place, story, cultural practices, and perspectives relevant to local First Peoples communities, the local community, and other cultures</td>
</tr>
</tbody>
</table>
Area of Learning: MATHEMATICS — Workplace Mathematics

Grade 11

Learning Standards (continued)

<table>
<thead>
<tr>
<th>Curricular Competencies</th>
<th>Content</th>
</tr>
</thead>
<tbody>
<tr>
<td>Communicating and representing</td>
<td>Explain and justify mathematical ideas and decisions in many ways</td>
</tr>
<tr>
<td>Represent mathematical ideas in concrete, pictorial, and symbolic forms</td>
<td></td>
</tr>
<tr>
<td>Use mathematical vocabulary and language to contribute to discussions in the classroom</td>
<td></td>
</tr>
<tr>
<td>Take risks when offering ideas in classroom discourse</td>
<td></td>
</tr>
<tr>
<td>Connecting and reflecting</td>
<td>Reflect on mathematical thinking</td>
</tr>
<tr>
<td>Connect mathematical concepts with each other, other areas, and personal interests**</td>
<td></td>
</tr>
<tr>
<td>Use mistakes as opportunities to advance learning</td>
<td></td>
</tr>
<tr>
<td>Incorporate First Peoples worldviews, perspectives, knowledge, and practices to make connections with mathematical concepts</td>
<td></td>
</tr>
</tbody>
</table>
• Proportional reasoning:
 – reasoning about comparisons of relative size or scale instead of numerical difference

• multiplicative:
 – the multiplicative relationship between two numbers or measures is a relationship of scale rather than an additive difference (e.g., “12 is three times the size of 4” is a multiplicative relationship; “12 is 8 more than 4” is an additive relationship)

 Sample questions to support inquiry with students:
 – How are proportions used to describe changes in size?
 – How are proportions used to solve problems in different contexts?
 – How can proportions be used to represent and analyze rates of change?
 – As the proportions of a shape change, what happens to the angles?

• decision making:
 Sample questions to support inquiry with students:
 – How do we make informed financial decisions?
 – What factors should be considered when making a large purchase?
 – What are the benefits of making responsible financial decisions?

• 3D objects:
 Sample questions to support inquiry with students:
 – Why is it important to represent 3D objects on a 2D plane?
 – Where are representations of 3D objects used outside the classroom?
 – Why is accuracy of measurement important when looking at scale diagrams?
 – Can all 3D objects be described using 2D representations?
 – What do we notice about angles in scale diagrams?

• understanding:
 Sample questions to support inquiry with students:
 – How does solving puzzles and playing games relate to mathematics?
 – How does experiential learning facilitate deeper understanding?

• notice and wonder:
 Sample questions to support inquiry with students:
 – How can statistical analysis help us make inferences about the future?
 – How can a trend be determined from a set of given data?
 – How can mathematics be used to influence our decisions around positive changes in society?
Curricular Competencies – Elaborations

<table>
<thead>
<tr>
<th>Description</th>
<th>Details</th>
</tr>
</thead>
</table>
| **thinking strategies:** | - using reason to determine winning strategies
- generalizing and extending |
| **analyze:** | - examine the structure of and connections between mathematical ideas (e.g., rate of change, trigonometry calculations) |
| **reason:** | - inductive and deductive reasoning
- predictions, generalizations, conclusions drawn from experiences (e.g., with puzzles, games, and coding) |
| **technology:** | - graphing technology, dynamic geometry, calculators, virtual manipulatives, concept-based apps
- can be used for a wide variety of purposes, including:
 - generating and testing inductive conjectures
 - mathematical modelling |
| **other tools:** | - manipulatives such as algebra tiles and other concrete materials |
| **Estimate reasonably:** | - be able to defend the reasonableness of an estimated value or a solution to a problem or equation (e.g., trigonometric angle/side relations and rate of change calculations) |
| **fluent, flexible and strategic thinking:** | - includes:
 - using known facts and benchmarks and partitioning (e.g., creating and interpreting 3D diagrams and making financial decisions based on evidence)
 - choosing from different ways to think of a number or operation (e.g., Which will be the most strategic or efficient?) |
| **Model:** | - use mathematical concepts and tools to solve problems and make decisions (e.g., in real-life and/or abstract scenarios)
- take a complex, essentially non-mathematical scenario and figure out what mathematical concepts and tools are needed to make sense of it |
| **situational contexts:** | - including real-life scenarios and open-ended challenges that connect mathematics with everyday life |
| **Think creatively:** | - by being open to trying different strategies
- refers to creative and innovative mathematical thinking rather than to representing math in a creative way, such as through art or music |
• **curiosity and wonder:**
 – asking questions to further understanding or to open other avenues of investigation

• **inquiry:**
 – includes structured, guided, and open inquiry
 – noticing and wondering
 – determining what is needed to make sense of and solve problems

• **Visualize:**
 – create and use mental images to support understanding
 – Visualization can be supported using dynamic materials (e.g., graphical relationships and simulations), concrete materials, drawings, and diagrams.

• **flexible and strategic approaches:**
 – deciding which mathematical tools to use to solve a problem
 – choosing an appropriate strategy to solve a problem (e.g., guess and check, model, solve a simpler problem, use a chart, use diagrams, role-play)

• **solve problems:**
 – interpret a situation to identify a problem
 – apply mathematics to solve the problem
 – analyze and evaluate the solution in terms of the initial context
 – repeat this cycle until a solution makes sense

• **persistence and a positive disposition:**
 – not giving up when facing a challenge
 – problem solving with vigour and determination

• **connected:**
 – through daily activities, local and traditional practices, popular media and news events, cross-curricular integration
 – by posing and solving problems or asking questions about place, stories, and cultural practices

• **Explain and justify:**
 – use mathematical arguments to convince
 – includes anticipating consequences

• **decisions:**
 – Have students explore which of two scenarios they would choose and then defend their choice.

• **many ways:**
 – including oral, written, visual, use of technology
 – communicating effectively according to what is being communicated and to whom
Curricular Competencies – Elaborations

• Represent:
 – using models, tables, graphs, words, numbers, symbols
 – connecting meanings among various representations

• discussions:
 – partner talks, small-group discussions, teacher-student conferences

• discourse:
 – is valuable for deepening understanding of concepts
 – can help clarify students’ thinking, even if they are not sure about an idea or have misconceptions

• Reflect:
 – share the mathematical thinking of self and others, including evaluating strategies and solutions, extending, posing new problems and questions

• Connect mathematical concepts:
 – to develop a sense of how mathematics helps us understand ourselves and the world around us (e.g., daily activities, local and traditional practices, popular media and news events, social justice, cross-curricular integration)

• mistakes:
 – range from calculation errors to misconceptions

• opportunities to advance learning:
 – by:
 ▪ analyzing errors to discover misunderstandings
 ▪ making adjustments in further attempts
 ▪ identifying not only mistakes but also parts of a solution that are correct

• Incorporate:
 – by:
 ▪ collaborating with Elders and knowledge keepers among local First Peoples
 ▪ exploring the First Peoples Principles of Learning (e.g., Learning is holistic, reflexive, reflective, experiential, and relational [focused on connectedness, on reciprocal relationships, and a sense of place]; Learning involves patience and time)
 ▪ making explicit connections with learning mathematics
 ▪ exploring cultural practices and knowledge of local First Peoples and identifying mathematical connections

• knowledge:
 – local knowledge and cultural practices that are appropriate to share and that are non-appropriated

• practices:
 – Bishop’s cultural practices: counting, measuring, locating, designing, playing, explaining
 – Aboriginal Education Resources
 – Teaching Mathematics in a First Nations Context, FNESC
Content – Elaborations

<table>
<thead>
<tr>
<th>MATHEMATICS – Workplace Mathematics</th>
</tr>
</thead>
<tbody>
<tr>
<td>Grade 11</td>
</tr>
</tbody>
</table>

- **financial literacy:**
 - personal investments, loans (lease versus buy), credit cards, mortgages, graphical representations of financial growth
 - to purchase, own, or lease and to operate and maintain a vehicle
 - banking services
 - other significant purchases

- **rate of change:**
 - slope of 3D objects, angle of elevation
 - interest rates

- **contexts:**
 - exploring games of chance and insurance payout likelihood
 - reading about and interpreting surveys and information in the media to make informed decisions
 - understanding statistical vocabulary

- **interpreting graphs:**
 - investigating graphs in the media (e.g., news articles, blogs, social media, websites, advertisements)
 - how data and media influence social justice issues and personal decisions

- **3D objects:**
 - creating and interpreting exploded diagrams and perspective diagrams
 - drawing and constructing 3D objects