Area of Learning: MATHEMATICS — Apprenticeship Mathematics
Grade 12

BIG IDEAS

<table>
<thead>
<tr>
<th>Design involves investigating, planning, creating, and evaluating.</th>
<th>Constructing 3D objects often requires a 2D plan.</th>
<th>Transferring mathematical skills between problems requires conceptual understanding and flexible thinking.</th>
<th>Proportional reasoning is used to make sense of multiplicative relationships.</th>
<th>Choosing a tool based on required precision and accuracy is important when measuring.</th>
</tr>
</thead>
</table>

Learning Standards

<table>
<thead>
<tr>
<th>Curricular Competencies</th>
<th>Content</th>
</tr>
</thead>
<tbody>
<tr>
<td>Students are expected to do the following:</td>
<td>Students are expected to know the following:</td>
</tr>
<tr>
<td>Reasoning and modelling</td>
<td>• measuring: using tools with graduated scales; conversions using metric and imperial</td>
</tr>
<tr>
<td>• Develop thinking strategies to solve puzzles and play games</td>
<td>• similar triangles: including right-angle trigonometry</td>
</tr>
<tr>
<td>• Explore, analyze, and apply mathematical ideas using reason, technology, and other tools</td>
<td>• 2D and 3D shapes: including area, surface area, volume, and nets</td>
</tr>
<tr>
<td>• Estimate reasonably and demonstrate fluent, flexible, and strategic thinking about number</td>
<td>• 3D objects and their views (isometric drawing, orthographic projection)</td>
</tr>
<tr>
<td>• Model with mathematics in situational contexts</td>
<td>• mathematics in the workplace</td>
</tr>
<tr>
<td>• Think creatively and with curiosity and wonder when exploring problems</td>
<td>• financial literacy: business investments and loans</td>
</tr>
<tr>
<td>Understanding and solving</td>
<td></td>
</tr>
<tr>
<td>• Develop, demonstrate, and apply conceptual understanding of mathematical ideas through play, story, inquiry, and problem solving</td>
<td></td>
</tr>
<tr>
<td>• Visualize to explore and illustrate mathematical concepts and relationships</td>
<td></td>
</tr>
<tr>
<td>• Apply flexible and strategic approaches to solve problems</td>
<td></td>
</tr>
<tr>
<td>• Solve problems with persistence and a positive disposition</td>
<td></td>
</tr>
<tr>
<td>• Engage in problem-solving experiences connected with place, story, cultural practices, and perspectives relevant to local First Peoples communities, the local community, and other cultures</td>
<td></td>
</tr>
</tbody>
</table>
Curricular Competencies

Communicating and representing
- Explain and justify mathematical ideas and decisions in many ways
- Represent mathematical ideas in concrete, pictorial, and symbolic forms
- Use mathematical vocabulary and language to contribute to discussions in the classroom
- Take risks when offering ideas in classroom discourse

Connecting and reflecting
- Reflect on mathematical thinking
- Connect mathematical concepts with each other, other areas, and personal interests
- Use mistakes as opportunities to advance learning
- Incorporate First Peoples worldviews, perspectives, knowledge, and practices to make connections with mathematical concepts
Design:

Sample questions to support inquiry with students:
- How is a product designed?
- How can the design process be applied to meet a need or solve a problem?

3D objects:

Sample questions to support inquiry with students:
- What are some limitations that result when 3D objects are represented in 2D?
- Which type of 2D representation would be the most appropriate for a 3D object?
- How does visualization help when solving problems?
- How does visualization help break down a larger problem?

Transferring mathematical skills:

Sample questions to support inquiry with students:
- How does awareness and knowledge of mathematics in the workplace make learning more meaningful?
- What is the mathematics required for a particular trade of interest?

Proportional reasoning:

- reasoning about comparisons of relative size or scale instead of numerical difference
- ways of showing proportional comparison when analyzing problems in situational contexts
 - scale diagrams
 - rates of change

Sample questions to support inquiry with students:
- How are proportions used to solve problems?
- What is the importance of proportional reasoning when making sense of the relationship between two things?

Measuring:

Sample questions to support inquiry with students:
- What skills are required for measuring with accuracy?
- What is the importance of choosing appropriate tools and units when measuring?
- What are the implications of inaccurate measurements?
thinking strategies:
- using reason to determine winning strategies
- generalizing and extending

analyze:
- examine the structure of and connections between mathematical ideas (e.g., proportional reasoning, metric/imperial conversions)

reason:
- inductive and deductive reasoning
- predictions, generalizations, conclusions drawn from experiences (e.g., with puzzles, games, and coding)

technology:
- graphing technology, dynamic geometry, calculators, virtual manipulatives, concept-based apps
- can be used for a wide variety of purposes, including:
 - exploring and demonstrating mathematical relationships
 - organizing and displaying data
 - generating and testing inductive conjectures
 - mathematical modelling

other tools:
- manipulatives such as rulers and other measuring tools

Estimate reasonably:
- be able to defend the reasonableness of an estimated value or a solution to a problem or equation (e.g., reasonableness of measurements)

fluent, flexible, and strategic thinking:
- including:
 - using known facts and benchmarks, partitioning, applying whole number strategies to expressions involving proportional reasoning, financial analysis, and logic
 - choosing from different ways to think of a number or operation (e.g., Which will be the most strategic or efficient?)

Model:
- use mathematical concepts and tools to solve problems and make decisions (e.g., in real-life and/or abstract scenarios)
- take a complex, essentially non-mathematical scenario and figure out what mathematical concepts and tools are needed to make sense of it

situational contexts:
- including real-life scenarios and open-ended challenges that connect mathematics with everyday life

Think creatively:
- by being open to trying different strategies
- refers to creative and innovative mathematical thinking rather than to representing math in a creative way, such as through art or music
MATHEMATICS – Apprenticeship Mathematics

Curricular Competencies – Elaborations

Grade 12

- **curiosity and wonder:**
 - asking questions to further understanding or to open other avenues of investigation

- **inquiry:**
 - includes structured, guided, and open inquiry
 - noticing and wondering
 - determining what is needed to make sense of and solve problems

- **Visualize:**
 - create and use mental images to support understanding
 - Visualization can be supported using dynamic materials (e.g., graphical relationships and simulations), concrete materials, drawings, and diagrams.

- **flexible and strategic approaches:**
 - deciding which mathematical tools to use to solve a problem
 - choosing an effective strategy to solve a problem (e.g., guess and check, model, solve a simpler problem, use a chart, use diagrams, role-play)

- **solve problems:**
 - interpret a situation to identify a problem
 - apply mathematics to solve the problem
 - analyze and evaluate the solution in terms of the initial context
 - repeat this cycle until a solution makes sense

- **persistence and a positive disposition:**
 - not giving up when facing a challenge
 - problem solving with vigour and determination

- **connected:**
 - through daily activities, local and traditional practices, popular media and news events, cross-curricular integration
 - by posing and solving problems or asking questions about place, stories, and cultural practices

- **Explain and justify:**
 - use mathematical arguments to convince
 - includes anticipating consequences

- **decisions:**
 - Have students explore which of two scenarios they would choose and then defend their choice.

- **many ways:**
 - including oral, written, visual, use of technology
 - communicating effectively according to what is being communicated and to whom
Curricular Competencies – Elaborations

MATHEMATICS – Apprenticeship Mathematics
Grade 12

- **Represent:**
 - using models, tables, graphs, words, numbers, symbols
 - connecting meanings among various representations

- **discussions:**
 - partner talks, small-group discussions, teacher-student conferences

- **discourse:**
 - is valuable for deepening understanding of concepts
 - can help clarify students’ thinking, even if they are not sure about an idea or have misconceptions

- **Reflect:**
 - share the mathematical thinking of self and others, including evaluating strategies and solutions, extending, posing new problems and questions

- **Connect mathematical concepts:**
 - to develop a sense of how mathematics helps us understand ourselves and the world around us (e.g., daily activities, local and traditional practices, popular media and news events, social justice, cross-curricular integration)

- **mistakes:**
 - range from calculation errors to misconceptions

- **opportunities to advance learning:**
 - by:
 - analyzing errors to discover misunderstandings
 - making adjustments in further attempts
 - identifying not only mistakes but also parts of a solution that are correct

- **Incorporate:**
 - by:
 - collaborating with Elders and knowledge keepers among local First Peoples
 - exploring the First Peoples Principles of Learning (e.g., Learning is holistic, reflexive, reflective, experiential, and relational [focused on connectedness, on reciprocal relationships, and a sense of place]; Learning involves patience and time)
 - making explicit connections with learning mathematics
 - exploring cultural practices and knowledge of local First Peoples and identifying mathematical connections

- **knowledge:**
 - local knowledge and cultural practices that are appropriate to share and that are non-appropriated

- **practices:**
 - **Bishop’s cultural practices:** counting, measuring, locating, designing, playing, explaining
 - **Aboriginal Education Resources**
 - **Teaching Mathematics in a First Nations Context,** FNESC
<table>
<thead>
<tr>
<th>Content – Elaborations</th>
</tr>
</thead>
<tbody>
<tr>
<td>measuring:</td>
</tr>
<tr>
<td>− unit analysis</td>
</tr>
<tr>
<td>− precision and accuracy</td>
</tr>
<tr>
<td>− breaking of units into smaller divisions to get more precise measurements</td>
</tr>
<tr>
<td>− extension: project or presentation to share measurement concepts and skills used in a field/career of interest</td>
</tr>
<tr>
<td>triangles:</td>
</tr>
<tr>
<td>− situational examples such as stairs and roofs</td>
</tr>
<tr>
<td>− application of Pythagorean theorem</td>
</tr>
<tr>
<td>− situations involving multiple right-angle triangles</td>
</tr>
<tr>
<td>3D objects:</td>
</tr>
<tr>
<td>− creating and reading various types of technical drawings</td>
</tr>
<tr>
<td>− extension: project or presentation to share geometry concepts and skills used in a field/career of interest</td>
</tr>
<tr>
<td>mathematics in the workplace:</td>
</tr>
<tr>
<td>− compare and contrast mathematics used in different workplace contexts</td>
</tr>
<tr>
<td>− interview someone working in a field of interest</td>
</tr>
<tr>
<td>− extension: project that includes an element of design and mathematical thinking</td>
</tr>
<tr>
<td>financial literacy:</td>
</tr>
<tr>
<td>− business investments, loans (lease versus buy), graphical representations of financial growth, projections, expenses</td>
</tr>
<tr>
<td>− extension: project or presentation to share mathematical concepts and skills used in a field/career of interest</td>
</tr>
</tbody>
</table>