Area of Learning: MATHEMATICS — Foundations of Mathematics

BIG IDEAS

- **Probabilistic thinking** informs decision making in situations involving chance and uncertainty.
- **Modelling** data requires an understanding of a variety of functions.
- **Mathematical analysis** informs financial decisions.
- Through **explorations** of spatial relationships, we can develop a geometrical appreciation of the world around us.

Learning Standards

<table>
<thead>
<tr>
<th>Curricular Competencies</th>
<th>Content</th>
</tr>
</thead>
<tbody>
<tr>
<td>Students are expected to do the following:</td>
<td>Students are expected to know the following:</td>
</tr>
<tr>
<td>Reasoning and modelling</td>
<td>• geometric explorations:</td>
</tr>
<tr>
<td>• Develop thinking strategies to solve puzzles and play games</td>
<td>• constructions</td>
</tr>
<tr>
<td>• Explore, analyze, and apply mathematical ideas using reason, technology, and other tools</td>
<td>• conics</td>
</tr>
<tr>
<td>• Estimate reasonably and demonstrate fluent, flexible, and strategic thinking about number</td>
<td>• fractals</td>
</tr>
<tr>
<td>• Model with mathematics in situational contexts</td>
<td>• graphical representations of polynomial, logarithmic, exponential, and sinusoidal functions</td>
</tr>
<tr>
<td>• Think creatively and with curiosity and wonder when exploring problems</td>
<td>• regression analysis</td>
</tr>
<tr>
<td>Understanding and solving</td>
<td>• combinatorics</td>
</tr>
<tr>
<td>• Develop, demonstrate, and apply conceptual understanding of mathematical ideas through play, story, inquiry, and problem solving</td>
<td>• odds, probability, and expected value</td>
</tr>
<tr>
<td>• Visualize to explore and illustrate mathematical concepts and relationships</td>
<td>• financial planning</td>
</tr>
<tr>
<td>• Apply flexible and strategic approaches to solve problems</td>
<td></td>
</tr>
</tbody>
</table>
Curricular Competencies

Communicating and representing
- Explain and justify mathematical ideas and decisions in many ways
- Represent mathematical ideas in concrete, pictorial, and symbolic forms
- Use mathematical vocabulary and language to contribute to discussions in the classroom
- Take risks when offering ideas in classroom discourse

Connecting and reflecting
- Reflect on mathematical thinking
- Connect mathematical concepts with each other, other areas, and personal interests
- Use mistakes as opportunities to advance learning
- Incorporate First Peoples worldviews, perspectives, knowledge, and practices to make connections with mathematical concepts

<table>
<thead>
<tr>
<th>Curricular Competencies</th>
<th>Content</th>
</tr>
</thead>
<tbody>
<tr>
<td>Communicating and representing</td>
<td>• Explain and justify mathematical ideas and decisions in many ways</td>
</tr>
<tr>
<td></td>
<td>• Represent mathematical ideas in concrete, pictorial, and symbolic forms</td>
</tr>
<tr>
<td></td>
<td>• Use mathematical vocabulary and language to contribute to discussions</td>
</tr>
<tr>
<td></td>
<td>in the classroom</td>
</tr>
<tr>
<td></td>
<td>• Take risks when offering ideas in classroom discourse</td>
</tr>
<tr>
<td>Connecting and reflecting</td>
<td>• Reflect on mathematical thinking</td>
</tr>
<tr>
<td></td>
<td>• Connect mathematical concepts with each other, other areas, and</td>
</tr>
<tr>
<td></td>
<td>personal interests</td>
</tr>
<tr>
<td></td>
<td>• Use mistakes as opportunities to advance learning</td>
</tr>
<tr>
<td></td>
<td>• Incorporate First Peoples worldviews, perspectives, knowledge,</td>
</tr>
<tr>
<td></td>
<td>and practices to make connections with mathematical concepts</td>
</tr>
</tbody>
</table>
Big Ideas – Elaborations

<table>
<thead>
<tr>
<th>MATHEMATICS – Foundations of Mathematics</th>
</tr>
</thead>
<tbody>
<tr>
<td>Grade 12</td>
</tr>
</tbody>
</table>

Probabilistic thinking:

Sample questions to support inquiry with students:
- How do we make decisions involving probabilities?
- How reliable is a test that is 98% accurate?
- What is the difference between reliability and accuracy?
- What information is needed when considering the likelihood of an event?

Modelling:

Sample questions to support inquiry with students:
- How do we know what type of regression best models a given set of data?
- What factors would affect the reliability of a regression analysis?
- What are the limitations associated with regression models?

Decisions:

Sample questions to support inquiry with students:
- How do we make decisions regarding our financial options?
- What are the repercussions of our financial decisions (e.g., in the short term versus the long term)?
- What factors influence our willingness to take financial risks?

Explorations:

Sample questions to support inquiry with students:
- What can we construct using a straightedge and compass?
- What properties change and stay the same when we vary a square, parallelogram, triangle, and so on?
- How are circles, ellipses, parabolas, and hyperbolas related?
- Where are conics found in the world around us?
- How does nature exhibit fractal properties?
- What patterns do we see in fractals?
• thinking strategies:
 – using reason to determine winning strategies
 – generalizing and extending
• analyze:
 – examine the structure of and connections between mathematical ideas (e.g., conic sections, functions, financial planning)
• reason:
 – inductive and deductive reasoning
 – predictions, generalizations, conclusions drawn from experiences (e.g., with puzzles, games, and coding)
• technology:
 – graphing technology, dynamic geometry, calculators, virtual manipulatives, concept-based apps
 – can be used for a wide variety of purposes, including:
 ▪ exploring and demonstrating mathematical relationships
 ▪ organizing and displaying data
 ▪ generating and testing inductive conjectures
 ▪ mathematical modelling
• other tools:
 – manipulatives such as algebra tiles and other concrete materials
• Estimate reasonably:
 – be able to defend the reasonableness of an estimated value or a solution to a problem or equation (e.g., regression analysis and combinatorics calculations)
• fluent, flexible and strategic thinking:
 – includes using known facts and benchmarks; partitioning; applying whole number strategies to graphing; regression choice; probability
• Model:
 – use mathematical concepts and tools to solve problems and make decisions (e.g., in real-life and/or abstract scenarios)
 – take a complex, essentially non-mathematical scenario and figure out what mathematical concepts and tools are needed to make sense of it
• situational contexts:
 – including real-life scenarios and open-ended challenges that connect mathematics with everyday life
• Think creatively:
 – by being open to trying different strategies
 – refers to creative and innovative mathematical thinking rather than to representing math in a creative way, such as through art or music
• curiosity and wonder:
 – asking questions to further understanding or to open other avenues of investigation
Curricular Competencies – Elaborations

• inquiry:
 – includes structured, guided, and open inquiry
 – noticing and wondering
 – determining what is needed to make sense of and solve problems

• Visualize:
 – create and use mental images to support understanding
 – Visualization can be supported using dynamic materials (e.g., graphical relationships and simulations), concrete materials, drawings, and diagrams.

• flexible and strategic approaches:
 – deciding which mathematical tools to use to solve a problem
 – choosing an effective strategy to solve a problem (e.g., guess and check, model, solve a simpler problem, use a chart, use diagrams, role-play)

• solve problems:
 – interpret a situation to identify a problem
 – apply mathematics to solve the problem
 – analyze and evaluate the solution in terms of the initial context
 – repeat this cycle until a solution makes sense

• persistence and a positive disposition:
 – not giving up when facing a challenge
 – problem solving with vigour and determination

• connected:
 – through daily activities, local and traditional practices, popular media and news events, cross-curricular integration
 – by posing and solving problems or asking questions about place, stories, and cultural practices

• Explain and justify:
 – use mathematical arguments to convince
 – includes anticipating consequences

• decisions:
 – Have students explore which of two scenarios they would choose and then defend their choice.

• many ways:
 – including oral, written, visual, use of technology
 – communicating effectively according to what is being communicated and to whom
Curricular Competencies – Elaborations

• Represent:
 – using models, tables, graphs, words, numbers, symbols
 – connecting meanings among various representations

• discussions:
 – partner talks, small-group discussions, teacher-student conferences

• discourse:
 – is valuable for deepening understanding of concepts
 – can help clarify students’ thinking, even if they are not sure about an idea or have misconceptions

• Reflect:
 – share the mathematical thinking of self and others, including evaluating strategies and solutions, extending, posing new problems and questions

• Connect mathematical concepts:
 – to develop a sense of how mathematics helps us understand ourselves and the world around us (e.g., daily activities, local and traditional practices, popular media and news events, social justice, cross-curricular integration)

• mistakes:
 – range from calculation errors to misconceptions

• opportunities to advance learning:
 – by:
 ▪ analyzing errors to discover misunderstandings
 ▪ making adjustments in further attempts
 ▪ identifying not only mistakes but also parts of a solution that are correct

• Incorporate:
 – by:
 ▪ collaborating with Elders and knowledge keepers among local First Peoples
 ▪ exploring the First Peoples Principles of Learning (e.g., Learning is holistic, reflexive, reflective, experiential, and relational [focused on connectedness, on reciprocal relationships, and a sense of place]; Learning involves patience and time)
 ▪ making explicit connections with learning mathematics
 ▪ exploring cultural practices and knowledge of local First Peoples and identifying mathematical connections

• knowledge:
 – local knowledge and cultural practices that are appropriate to share and that are non-appropriated

• practices:
 – Bishop’s cultural practices: counting, measuring, locating, designing, playing, explaining
 – Aboriginal Education Resources
 – Teaching Mathematics in a First Nations Context, FNESC
Content – Elaborations

<table>
<thead>
<tr>
<th>MATHEMATICS – Foundations of Mathematics</th>
</tr>
</thead>
<tbody>
<tr>
<td>Grade 12</td>
</tr>
</tbody>
</table>

- **constructions:**
 - perpendicular bisector, tangents, polygons, tessellations, geometric art

- **conics:**
 - locus definition and constructions, conic sections, applications

- **fractals:**
 - understanding fractals as an iteration of a simple instruction
 - constructing and analyzing models of fractals, such as Cantor’s dust, Serpinski’s triangle, Koch’s snowflake
 - connecting fractals with nature

- **representations:**
 - using technology only
 - using characteristics of a graph to identify these functions

- **regression analysis:**
 - polynomial, exponential, sinusoidal, logarithmic
 - applying the appropriate regression model

- **combinatorics:**
 - permutations, combinations, pathways, Pascal’s Triangle

- **odds, probability:**
 - mutually exclusive, non–mutually exclusive, conditional probability, binomial probability
 - Venn diagrams

- **financial planning:**
 - developing a personal financial portfolio
 - mortgages
 - risk
 - changing interest rates and/or payments
 - credit cards
 - exploring banking options and financial markets