Area of Learning: SCIENCE — Chemistry

Grade 12

BIG IDEAS

- Reactants must collide to react, and the **reaction rate** is dependent on the surrounding conditions.
- **Dynamic equilibrium** can be shifted by changes to the surrounding conditions.
- **Saturated solutions** are systems in equilibrium.
- **Acid or base strength** depends on the degree of ion dissociation.
- **Oxidation and reduction** are complementary processes that involve the gain or loss of electrons.

Learning Standards

<table>
<thead>
<tr>
<th>Curricular Competencies</th>
<th>Content</th>
</tr>
</thead>
<tbody>
<tr>
<td>Students are expected to be able to do the following:</td>
<td>Students are expected to know the following:</td>
</tr>
</tbody>
</table>
| **Questioning and predicting** | • reaction rate
• collision theory
• energy change during a chemical reaction
• reaction mechanism
• catalysts
• dynamic nature of chemical equilibrium
• Le Châtelier’s principle and equilibrium shift
• equilibrium constant (K_{eq})
• saturated solutions and solubility product (K_{sp})
• relative strength of acids and bases in solution
• water as an equilibrium system
• weak acids and weak bases
• titration
• hydrolysis of ions in salt solutions
• applications of acid-base reactions
• the oxidation-reduction process
• electrochemical cells
• electrolytic cells
• quantitative relationships |
| • Demonstrate a sustained intellectual curiosity about a scientific topic or problem of personal, local, or global interest
• Make observations aimed at identifying their own questions, including increasingly abstract ones, about the natural world
• Formulate multiple hypotheses and predict multiple outcomes | |
| **Planning and conducting** | |
| • Collaboratively and individually plan, select, and use appropriate investigation methods, including field work and lab experiments, to collect reliable data (qualitative and quantitative)
• Assess risks and address ethical, cultural, and/or environmental issues associated with their proposed methods
• Use appropriate SI units and appropriate equipment, including digital technologies, to systematically and accurately collect and record data
• Apply the concepts of accuracy and precision to experimental procedures and data:
 • significant figures
 • uncertainty
 • scientific notation | |
| **Processing and analyzing data and information** | |
| • Experience and interpret the local environment | |
Curricular Competencies

- Apply First Peoples perspectives and knowledge, other ways of knowing, and local knowledge as sources of information
- Seek and analyze patterns, trends, and connections in data, including describing relationships between variables, performing calculations, and identifying inconsistencies
- Construct, analyze, and interpret graphs, models, and/or diagrams
- Use knowledge of scientific concepts to draw conclusions that are consistent with evidence
- Analyze cause-and-effect relationships

Evaluating

- Evaluate their methods and experimental conditions, including identifying sources of error or uncertainty, confounding variables, and possible alternative explanations and conclusions
- Describe specific ways to improve their investigation methods and the quality of their data
- Evaluate the validity and limitations of a model or analogy in relation to the phenomenon modelled
- Demonstrate an awareness of assumptions, question information given, and identify bias in their own work and in primary and secondary sources
- Consider the changes in knowledge over time as tools and technologies have developed
- Connect scientific explorations to careers in science
- Exercise a healthy, informed skepticism and use scientific knowledge and findings to form their own investigations to evaluate claims in primary and secondary sources
- Consider social, ethical, and environmental implications of the findings from their own and others’ investigations
- Critically analyze the validity of information in primary and secondary sources and evaluate the approaches used to solve problems
- Assess risks in the context of personal safety and social responsibility
Learning Standards (continued)

<table>
<thead>
<tr>
<th>Curricular Competencies</th>
<th>Content</th>
</tr>
</thead>
<tbody>
<tr>
<td>Applying and innovating</td>
<td></td>
</tr>
<tr>
<td>• Contribute to care for self, others, community, and world through individual or collaborative approaches</td>
<td></td>
</tr>
<tr>
<td>• Cooperatively design projects with local and/or global connections and applications</td>
<td></td>
</tr>
<tr>
<td>• Contribute to finding solutions to problems at a local and/or global level through inquiry</td>
<td></td>
</tr>
<tr>
<td>• Implement multiple strategies to solve problems in real-life, applied, and conceptual situations</td>
<td></td>
</tr>
<tr>
<td>• Consider the role of scientists in innovation</td>
<td></td>
</tr>
<tr>
<td>Communicating</td>
<td></td>
</tr>
<tr>
<td>• Formulate physical or mental theoretical models to describe a phenomenon</td>
<td></td>
</tr>
<tr>
<td>• Communicate scientific ideas and information, and perhaps a suggested course of action, for a specific purpose and audience, constructing evidence-based arguments and using appropriate scientific language, conventions, and representations</td>
<td></td>
</tr>
<tr>
<td>• Express and reflect on a variety of experiences, perspectives, and worldviews through place</td>
<td></td>
</tr>
</tbody>
</table>